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A criterion for the optimum performance of a third-order contactor
acceleration control system having complex roots is presented. This
criterion determines the switching seq~ce of a contactor utilized to
secure optimum performance and is hence called a switching criterion.
&ical and analog-coquter mstbods are utilized to determine this
criterion. The resulting optimum transient responses are presented and
compared with those of a liqear system. ti order to introduce the
methods involved, the switobing criterion is first determined for a
second-order system.

INTRODUCTION

I&my recent advances
toward the improvement of

in contactor servo theory have been directed
control-system transient responses. These

@rovements have resulted in systems with tramient responses to step
inputs of the controlled,variablethat reach steady-state values in a
minimum of time with no trsasient overshoot. Such transient responses
are called optimum responses.

An early paper by Flfige-titz and IUotter (ref. 1) applled antici-
patory switching to contactor servomechszxisms. Tn 1946, Weiss (ref. 2)
presented a detailed phase-plane anslysis of a second-order contactor
servomechsmism. McDona3d (ref. 3) later determined a unique switching
criterion for this second-order system. Kkng and Fett (ref. k) applied
the concept of principal-coordinatephase space to nonlinear servn sys-
tems. Tbis concept simplified the analysis of higher order systems.
~ 1953, Bushaw (ref. 5) presented am analysis of the switching curve
in the phase plane which yields transient responses that reach steady
state in a milxbmm of time. Bogner and ~zd.a (ref. 6) and Bogner
(ref. 7) present ageneraJized method forobta~an opthumswitch3ng
criterion in higher order systems and apply these methods to a third-
order systa with real roots. Tbis criterion req~es that an element
with contactor characteristicsbe actuated by a nonlinesr function of
the control-system error and its time derivatives in such a manner that
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of the system output go to zero at the instant that the ,
arrins at a steady-state value.

‘Ihepurpose of this study is to apply the method presented in ref- ‘
erence 7 for determhing the optimum switching criterion to a third-
order system ham complex conjugate roots. Furthermore, this paper
presents a relatively simple analog-computermethod for obtaining this
criterion smd the resulting optimum transient responses.

lh order to introduce the methods involved, the switching criterion
is first determined for a second-order system that is descriptive of an
ideal missile roll control system The methods are then applied to a
third-order system that is descriptive of an ideal missile acceleration
control system. - application of this method to this system is com-
plicated by the presence of complex conjugate roots.

-ient responses of a third-prder limited-~ system are also
included in this paper. ~ese transient responses present a basis of
comparison for the optimum third-order contactor control systems.

%%9?2,3>34

m=

constants of integration

constant coefficient in airframe normal-acceleration
trsmsfer fimction, radians/see

nondimensionalized constant, c~2

constant coefficient in airframe normibacceleration
transfer function, (radisms/see)2

nondimensionalized system error

nondimensionaMzed system error bput

acceleration due to gratity

,.

:.,

velocity constant of sermxmtor in norm.1.-acceleration
control system, deg/sec/mlt #

proportionaliq constant in Umrl.ted-linesrnorml-
acceleration control system, Volts/g unit
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K4

n

feedkack gain constant in khulted-linear norkl-
acceleration control system, Volts/g unit/sec2

veloci~ constant of akrframe trsmsfer function in
roll control system, deg/sec/deg

static gain constant of airfrqme transfer function
.in normal-acceleration control systm, gunits/deg

control-systemnormsl+cceleration output signal,
g units

control-system normal+cceleration input signal,
g units

Laplace transform variable

roll-control-systemor airframe

time, sec

coordinate of w phase space

time constant, sec

locus of switching points in Wn space

forcing function for nnihemtical analysis

actuating signal for servcmmtor, vnlts

control-surfacedeflection, deg

control-system

characteristic
system

actuating signal, g units or

roots of normal-acceleration

dimensionless time

control-systemroll-angle output signhl, deg

control-systemroll-singleinput signal, deg

deg

control

—. . .- —.——. —- —..— .
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A

dot over a quanti~ denotes

primed quanti~ deIIOteS the

tiIW T.

The subscript a is employed

Z%e subscript n is employed

Contactor: A nonMnear
lade with the sign of
the input is zero.

the derivative with respect to time t.

derivative with respect to dimensionless

as a switching index (a = 0, 1, 2, and 3) .

as a coordinate index (n + 1, 2, and 3) .

DEFINITIONS

element which has an output constant in mami-
the *put and, furthermore, has zero outpu~ when

Optimm transient response: A transient response that reaches the steady-
state value inandnimum of time with no overshoot.

Switching criterion: The system conditions at which contactor reversal
must take place to yield optimum trmsient responses.

LOCUE of first switching points: ‘lb locus of system coordinates required
to define the first contactor reversal points in an optimum contactor
control system

Locus of second titching points: me 10CUE of system coordinates
required to define the second contactor reversal points in an opt-
tldrd-order contactor control system.

Zero trajectories: The phase-space trajectories passing through the
origin.

SYSTEM DESCRITTIOll .

Second-order System

A block d.i~ Of the ftist SySk COIISi@ed in this ilIVeSti@-
tion is given in figure l(a). This system is descriptive of a missile
contactor roll control system. A step input @i to the system causes
an error e to be applied to the contactor element. The sign of this
error signal actuates the contactor which then applies a step aileron
deflection 8 to the control surface. A reversal of the sign of the
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error signal when the error reaches zero causes a corresponding reversal
of the contactor output. In order to facilitate the analysis, 5 is
limited to *lo. The magnitude of the aileron deflection is included in
the airframe velocity cons-taut. The performance of this system is char-
acterized by a large initial overshoot and a decs@ng oscillation.

The contactor system of figure l(a) was then modified by the inclu-
sion of a computer element controlling the contactor input to cause an
optimum system respnse. Figure l(b) is a block diagram of the modified
system. h response to a step input @i, this element actuates the con-

tactor which ap@ies a step aileron .deflection 5 to the airframe.
Unllke the system of figure l(a), the sign of 5 is reversed before the
error reaches zero. M the optimum case, the sign reversal takes place
at the appropriate time to cause the error and the first time derivative
of the error to reach zero simultaneously. The return of the control-
surface servo to a neutral position remves the control-surfacedeflec-
tion, and the system r-ins at rest. !Cheneutral relay position required
to keep the system at rest is not shown in the block diagrams; therefore,
figures l(b) and 2 ap@y to the systems only when they are not at this
rest or steady-stateposition.

M-order System

A block diagramof the optimu third-order contactor control system
considered for this study is given in figure 2. I!heperformance of this
system is similar to that of the optimum second-order system previously
described with the exception that? because of the order of the system,
the computer element met actuate the contactor b such amanner that
the error end its first two tim derivatives go to zero simultaneously.
In order to accomplish this, a minimum of twu stitchings is required.
In response to a step input of acceleration, the contactor element of
the optimum third-order system applies a constant rate of pitch control-
surface deflection to the.airf’rame. h a manner s~ to the second-
order system, the contactor output is restricted to *1 by including the
actual magnitude of this output in the constant K1. The resulting rate

of control-surfacedeflection ~ causes the error to decrease at an
increasing rate. m, the contactor output is reversed. The error
continues to decrease tit with a decreasing rate. Once more reversal
of the contactor output causes the error, the error rate, and error
acceleration to go to zero simultaneously. Figure 3 illustrates a typi-
cal response of this system to a step input of the controlled variable.
5s figure contains time MstoYies of e, %, g, ~,and q.

. . . . .—-- .—_ __ — —__
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Figure 4 is a block diagram of a limited-linear third-order normal-
acceleration control system. The forward loop gain ~ and the feedback

gain K3 of this system were adjusted to minindze fl Ie(t) dt for a
o

5g step input.

METHOD OF ANALYSIS

The analysis is concerned with the determination of the switching
criterion necessary for the opthmzm performance of a contactor control
system. The nxxhh&atical
by I?ognerh reference 7.
the systems discussed are

The equation for the

&sis i; msedpr=ly on that developed
The transfer-function coefficientsused for

presented in table I.

Second-Order System

simple contactor roll control system shown in
figure l(a) can be written as

T!&!i+~=K@

dt2 ‘t

Inasmuch as e = h - #, if O* step tiputs
equation (1) can be written:

a%T— +q= -K45

dt2 ‘t

(1)

! ,,

of position are considered,

(2)

Substituting ~= & ~ and perforndng the integration yields

where B. is the constant of integration. ~uation (3) yields the phase

portrait for the system from which any of the possible system trajectories
may be obtatied. For the system of figure l(a), the sign of 5 reverses ~

.—— -.
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as e changes sign. A typical phase-plane
system to a step input of position obtained
shown in figure-
in fi~ 6.

Evaluation

the phase-plane

I?ecauseof
is actually two

—
~, and a transient response

7

plot of the response of the
from an analog computer is
for

of the constant of tite~tion

trajectories through the origin

the dual value Of b (that iS,
eqpations:

this system is presented

~ ineq~tion (3) for

gives

= o (4)

b = +~o), eqution (4)

Inasmuch as there exists only one solution of the eqpation ~= f(~,e)
d&

through each point in the phase plsne, eqwtions (>) and (~) represent
the O* paths along which the representativepoint of the system msy
enter or leave the origin. These axe called the zero trajectories.

Figure 7 shows zero trajectories obtained from equations (>) and
(5b) on an analog computer and by direct numerical substitution. Por-
tions of these zero tfijectories will later be used for the optimum sys-
tem of figure l(b). ~ eqyation (2) is set up on an analog computer, a
phase-plane plot of ~ against G obtained as the representativepoint
moves from the ori~ with 5 = +1° till give curve oa of figure 7. Simi-
larly, a solution of the same eq.mtion with 5 = -1° yields curw ob.
The substitution of -t for t in equation (2) results in the following
equation:

T d2e de—- —=-K45
dt2 dt

(6)

.— - ... ...— —— _..— . — —.-
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A phase-plane plot of & against e obtained for equation (6) in a
similar manner fkom an analog computer with b = +1° and 5 = -1° yields “
the curves oc and od, respectively, of figure 7. (See ref. 8.)

The segments of the zero trajectory od and oc entering the origin
(.

can be utiM.zed as the contactor switching curve. If the sign of 5 is
reversed at the instant a system trajectory first intersects a segment
of the zero trajectory entering the origin (at a point such as (a) in
fig. 5), the system trajectory will then follow the zero trajectory to
the origin and execute a deadbeat response. !T!hisstitclxlngcriterion
will yield an optimum transient response.

The block diagremof the second-order system, modified by the addi-
tion of a computer element to reverse the sign of 5 when the represent-
ative point first intersects the switching curve, is presented in fig-
ure l(b). This computer element senses the region of figure 7 in which
the representativepoint of the system trajectory lies, and produces the
proper contactor output. Whenever the representativepoint crosses the
segment of the zero trajectory leading to the ori~, the contactor out-
Put reverses. ~, at the instaut this point enters the origin, the
contactor output goes to zero. Figure 7 also illustrates typical phase-
plane responses of this systemto step tiputs of position, and figure 8,
a number of transient responses obtained on an smalog computer.

Third-Order System
.,

IuQthe second-order contactor system, the switching criterion causes “
e and 6 to go to zero shiltapeously. 3?oran optimum third-order sys-
tem, it canbe shown that e, e, and % must go to zero simultaneously.
It is shuwn in reference 7 that two stitchings are reqtired to do this. ,
In a third-order system the second or final switching curve in phase space
leads to the origin and, hence, is still cdd.ed the zero trajectory. In
general, the locus of first switching points in a third-order system con-
sists of a surface conta~ the zero trajectory. lY, however, the
tiputs to the system are restricted to steps of the controlled variable,
the locus of first switching points becomes a line lying h this surface.

In the folMwing analysis the equation for the third-order system
is presented. With the in’@Ljxrestricted to steps of the controlled
variable, a pair of simultaneous equations for the locus of first switching
points is obtained. The zero trajectory is sMo developed from the eqpa-
tion for the system. An analog-computermethod for obtaining this
switching criterion is introduced and used to check the analytically
derived criterion. Wansient responses are then obtained from the con-
tactor system using this switching criterion.

. .—+ . . . — .. . ...- —____ ..—. . ..——.—. ---- . . .. . . . —
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.

WiCti method.- A block diagrsm of the third-order contactor
acceleration control system studied is given in figure 2. The differen-
tial.equation of the basic system in terms of the error variable can be
written as follows:

In
is

“~(t) + b~(t) + c&(t) = K1~c 4 (7a)

the a~endix, where a complete derivation of the switching criterion
presented, equation (7a) is nondimensionalized and written as

E“’(T) -+E’’(T)+ CE’(T) =A (n)

Equation (7b) is in general form inasmuch as time and amplitude scales
may be adjusted for any desired undamped natural freqyency and system
velocity constant. The results obtained can be applied to any similar
system with the same damping ratio (0.14).

b the following analysis, after two transformations of variables,
the switching criterion is determined in terms”of w1, W2, and W3.

These transformationswere used to facilitate the analysis. The varia-
y the following three eqmtions:bles wl) w2~ ~d W3 are defined b

W1(T) = E(T) +~E’(r) -I--E’’(T)
A@3 1213

1 E“(r)
I

W2(T) =-— -—
x2~3
1 E’(T) ~A3

A3% ?&
W3(T) = -j

--j “(T) - j

/

(8)

+] “’(T)J
where the characteristicroots of the system me represented by A.

b determining the loci of switching points, the variables W-

are introduced. The locus of first switching points willbe written
in terms Of ~) w~> ‘d %1 and the zero tz%jectory, or locus of

. . . .. .. —..-—...-— — ..— —z .- —
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second switching points, in terms of WE, W222 - W32 tith both

loci l@lg in the Wl, W2, and w3 phase space. It is shown in the

appendix that the locus of first.switching points can be represented by
the following two equations: ,,

Figure 9 contains a plot in the w3w2 plane of values of w~ and

w31 which satisfy equation (9). Inasmuch as equations (9) and (10) are

simultaneous equtions, the values of w= and W31 which satisfy equa-

tion (9) were substituted point by point into equation (10), and the
resulting eqwtion solved for w~. The values of WU thus obtained

are shown plotted against w~ and %1 in figures 10 and U. This

numerical evaluation was done with a digital computer. Figure 12 is a
sketch of the 10CVS of first switching points in the upper half of the
w phase space.

It is further shown in the appendix that the locus of second
switching points or zero trajectory can be e~ressed by the following
pati of simultaneous eqmtions:

——- . .. . .. . —. .—
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(
A32- 2-%)

X2%32(A3 - ?Q)

4 “== A32-&”lb2’=&w~)

~ W1W3projection of

(12)

the locus of second switching points is plotted

in figure 13. Ikcause the inputs are restricted to steps of the con-
trolled variable, only the initial portion of this trajectory on either
side of the origin is used.

Analog-computer method.- The two loci of switching points canbe
obtained ~ ananalog-computer method. The determination of the switching
criterion by this method involves the use of the original equation for
the system (eq. (7b)) on an analog computer. Inasmuch as this eq~tion
is used, the criterion can be obtained in terms of the original system
variables. However, for the presentation given here, the transformations
of equtions (8) were incorporated with eqution (~) in the analog- .
computer setup. ‘Ibisperndtted the use of the analog-computermethod
to check the analytical results.

Transformed System COOl?&h@XX: The actual determination of the
switching criterion by an analog-computer method is accomplished in
three steps. First, the zero trajectory or locus of second switching
points is obtained. Second, the W3W2 projection of the 10CUS of the

first switcbtng points is determined. ~, after the complete space
trajectory of the locus of second switching points and the W3W2 pro-

jection of the locus of first switching points are determined, the
remaining wl coordinates of the locus of first switching points are
obtained. In detail, this procedure is as follows:

(1) A solution is obtained in negative time from the origin of the
w phase space with +A The resulting space curve is the path along
which all trajectories entering the origin must travel. As in the second-
order system, this space curve is called the zero trajectory.

(2) For step inputs (w1,O,O) to the system in positive tine, all

initial trajectories have the same W3W2 projection. Any subsequent

switching from such initial trajectories must also have this projection.
Hence, the W3W2 projection of the locus of first switching points is

determined by operating the system in positive time with M from the
origin or any point on the wl sxis and recording the W3W2 projection

of the resulting trajectory.

..... ___ -....-—.—. —— .-— .- _ . . ~—- —.. -— -—



12

(3) me zero trajectory and

first switching points have been
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the W3W2 projection of the 10CUS of

determined. The ~ values of the
.

remain to be found. Figure 14 shows
the W3W2 projection of these tio loci. H the system leaves the ori- ,r

~ (Petit o of fig. 14) innegati= time along the zero trajectory and
A is switched at some point b between the origin and point a of curve oa,
the value of W1 recorded at the intersection of the resulting trajectory

- the W3W2 projection of the locus of first switching points (points c>

d, e, and f of fig. 14) is the remaining coordinate of this space curve.
H the sign of A is again reversed at this intersection, the trajectory
will fo120w the locus of first switching points to the origin. ~ VarYti
the point on the zero trajectory where the system is first switched in
negative the, the space curve of the locus of first switching points can
be defined.

Values of the zero trajectory obtained by the method discussed are
plotted in figure 13 along with solutions of the smalytical expression.
Fkojections of the locus of first switching points obtained with this
method sre shown with digital-computer solutions of the analytical
~ressions in figures 9, 10, and 11. It was found, during the analog-
computer determination of the locus of first switching points, that the
W1 values associated with this space curve must be determined with care.
Because of the stitchings involved, it is possible to introduce consider-
able error at this point.

The phase-space operation of the system in response to a step input
of the controlled variable is shown in figures 15 and 16. The phase-

i.

space trajectory begins with the initial value of error at point a. It
travels along curve ab of these two figures-until it intersects the locus
of first switching points at b. At this point, the sign of & is

reversed. This reversal changes the direction of the trajectory, which
now travels along curve bc until the zero trajectory is reached at
point c. Here the sign of & is again reversed and the system travels

along the zero trajectcq to the origin at point d.

original-system coordinates: The analog method canbe summarized
in terms of its use to determine the switchiug criterion in terms of an
original system error variable. The equation for the system is set up
on the computer and a solution for G(T) is obtained in negative time.

The trajectory =(-T) = 1f~(-T),&(-T),A obtained in this mnner is

the system locus of second switchingpoints or zero trajectory.’ The
equation of the system is then set up in positive time and the projec-
tion of the trajectory in the ~(t)g(t) plane is recorded. This pro-
jection coincides with that of the locus of the first switching points

.
—. -- _-— -.——-— .- - —— — — —————
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.

in this plane. The remaining coordinate ~(t) is obtained ~plotting
the system trajectory on the ~(t)~(t) plame as the system leaves the
origin in negative time and then reversing the sign of A until the
trajectory intercepts the previously mentioned projection plotted inpos-
itive time. The value of e(t) at this intercept is tha remaining
reqtired coordinate of the locus of first switching points. The proce-
dure is repeated until sufficient potits on this locus are established.

DISCUSSION OF THIRD-ORDER TNU?SIENTRESPONSES

Transient responses obtained fkom the optimum contactor normal-
acceleration control system for several step-tiput amplitudes are shown
in figure 17. These responses are evaluated by comparison wi.ththose of”
an equivalent limited-linear system. The linear system utilized for this
purpose is shown in the block diagram of figure 2. The maximum rate of
control-surfacedeflection of the linear system was limited to that of the
relay system. In addition, the forward loop gain K2 and the feedback

gain ~ of the linear system were adjusted to minimize Jtl Ie(t) dt

for a step input of ~g. A series of transient responses obtained from
this system for several step-input amplitudes are shown in figure 18.
A comparison of figures 17 and 18 shows that in the optimum system ~-
shoot is eliminated. In addition, this comparison also shows that there
is a considerable superiority in rise time of the optimum system for
input amplitudes below those at which the linear-system gains are adjusted. .
For larger input amplitudes, this superiority is less because the limited-
linear system operates at its velocity saturation Mmit for a large per-
centage of the transient t3me. For the optimum case, the control surface,
in response to a positive unit step input ni, initially travels at a pos-

itive constant-rate and then at the a~ropriate time travels at a negatim
rate. At the second switching point, the control surface travels at the
positive constant rate agaixiuntil the output n arrives at the steady-
state value. TMs control-surfaceresponse is @pical of the optimum
contactor control systemsnd is proportional to the integral of 4(t)

of figure 3.

colmLmm?GREMARKS

This paper presents a switching criterion that yields an optimum
transient response to step inputs of the controlled variable for a third-
order contactor system with cowlex roots. This optimum response has no
overshoot and arrives at a steady-statevalue in.a minimum of time in
response to a step input of the controlled variable.
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Two methods of obtaining this switching criterion, a direct mathe-
matical method and the analog-computermethod, are presented. b the
direct m%thenmtical method, two transformationsof variables were applied
to the original nodhnens itmalized equation of the system to determine
the equations of the two loci of switching points in the phase space.
The equations of these loci are in general form inasmuch as the time
scale of the transient outputs as well as the amplitude scale may be
adjusted for any desired undamped natural freqmcy and system velocity
constant for the given value of damping ratio. A digital computer was
utildzed to obtain the actual coordinates of the switching loci after
the equations of these loci were established.

The smalog-computermethod, although lacking the accuracy of the
mathematical method, offers a relatively simple means of obtaining the
two loci of switching points. h additionY these loci can be determined
in terms of the original system error variable with no transformations.

The transient responses of the optimum system were compared with

those of the equivalent limited-linear system. The optimum contactor
acceleration control system is superior with respect to the time required
to reach steady-statevalues; however, for large step inputs of the con-
trolled variable, this time advantage is less because the Mmited-linear
system operates at the veloci~ saturation limit for a large percentage
of the transient time.

.

.

Langley Aeronsuticsl Laboratory, .
National Advisov Committee for Aeronautics,

-W Meld, Va., l&y 10, 1956.
..
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APPENDIX

DERIVATION OF THIRD-ORDER SWXZUNS CRITERION

symbols

[1
010

llB%tz’tiool

o -c -1

[1
o

natrix O

A

transformation matrix

inverse matrix P

ancoordinate in space — (n = 1, 2, and 3)
dp

mtrix

principal coordinates of system (n = 1, 2, and 3)

matrix

. .. —. .—— ——. . .—. -
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Tbir&Order Switching Criterion

The basic form of the equation for the third-order system of fig-
ure2is

When e = ni - n and inputs sxe

that fii= iii= ?ii= 0, equation (Al)

M + c)

restricted to steps of ~ so

can be written as follows:

?(t) + b~(t) + c~(t) = -K1~c A (A2)

This equation can be simplifiedwith the fold.owimgsubstitutions:

A=+r

T = bt

This simplification

Let

@
E(r) = —

K1~c
e(t)

results in

E“’(T) +E’’(T) +(X’(T) =A

U1 = E(T)

%2 = E’(T)

U3 = E“(T)
}

(A4)

.

(A3)

.— —-. . . . . .- .
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Mom equations (A3)

b matrix notation,

17

and (Ah) the fo~owing equations can be written:

dul
—=%dr

d%
—=U
dT 3.

equations (A5) become

N
U1 o

&2=o

U3 o

The roots of the

1

1

0

-c mo “Ul o

1 U2+o

-1 U3 A

d ]= Au]+G]
Zi”

characteristic equation are

When j~ = fl - 4C, these roots

,..

0

-1+- h-4c

-1-il-4c

can be written as follows:

-1- il$13=—
2 I

(A5)

(A6)

(A7)

(A8)

. ..—.- ----- .... . . ____ ._. _ _ _____ ..__
!.
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Introducing a new coordinate space v] tith the transformation

matrix P so that
<1

u] =Pv]

~ermits writing the system equation (A7) in terms of the new coordinates
as follows:

(3=
d. ‘]

P-% v] + P-l.G] (Ale)

When the prticipal-coordinate transformation is ap@ied, the
matrfi P is determined so that the resul.t& P-MI? matrix is of the
diagonal form. This selection results in (see ref. 7)

lhmm equation (All), where

pa .

.

1

0

10

H111P= o AZ 13

1 Jo @ 132

1

(All)

(A12)

After substitution of tha values of equations (All) and (A12) for
the transformation mtrix and its inverse, the mtrix P-lAP csn be
evaluated as

. -...—— —.. . . . . . . . .._ . .. .
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p-lAp =

?)-0 o-

OA20

00 A3

—.. _____

19

(A13)

The substitution of equations (AM) and (A13) into equation (AIO) gives

,.
V1

V2

‘3-,

000”

0%0

Ooh . [

V1

V2

3

+

1 & &

‘*%%

which is equivalent to

.-
0

0

A
--

(A14)

(~5)

(u6)

Eliminating dT between eqwtions (A14) and (W5) and between equa-
tions (A14) and (A16) sad integrating results-in the fo~owing equations:

(A17)

------ .-- —- -- .—— —— —-— —. .. —-- ..—
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vl=*l.%p+--&-’p-p

Equations (A17) and (n8)
in * of VI, V2, and V3

terms of tbes-esame variables.
In order to reduce
that eqwtion (A9)

“

caibe solved to yield a zero trajectory
and a locus of first switching points in

These variables are, however, complex.
these equations to real variables, it is first noted
when solved for v] yields

1v =P -1 ~
1 (AJ-9)

The substitution of equation (AM) into equation (A19) leads to the
folluwing set of equations:

V2 =

‘3 =

of equtions (A8) tit. equations (A20) givesThe ~bstitution

k
VI =ul+— %+*U3

B2+1

(A20) ,

,.

-—— —
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Inasnnzchas V2 and v~

Variablej the following change
of real variables:

21
.,

sre complex conjugates and vl is a real

of variables will yield equations in terms

w. = v-l

W2 = V2+V3 I
Ehibstitutingequations (A22) into eqmtions (A21) yields

4
wl =ul+— w&u3

$2+1 1

4
w2 =-— 4-—U3

p%l w pz+l

(A22)

(A23)

Orj in terms of Xl

---- . .. .. .. — —--. — —— —— ——- . .
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Substituting equations (A22) tito equations (A17) and (AI.8)yields

[

q = -* lo% g(w2-- 3W3)+
%(~3A- b)1

These two equations can be rewritten as fo~ows:

-I-B1 (=5)

++ (A26)

‘3 (A27)

A ~ical response of the system considered to a step input of the
controlled variable will begin at E(r) = ~, E’(T) = 0, and E“(T) = O
andterdnate at E(T) = O, E’(T) = O, and E“(T) = O tithe E(T)
phase plane. The initial point of this response will be called 0, the
first switching point 1, the second switching point 2, and the terminal
point or origin 3. w using the transformations of equations (A24) and
the notation that wn at a point a along a trajectory becomes Wm,
this response

and terminate

This response

can beshownto beginat ~=~=wloj w2= 0, W3=0.

at ~=0, wz= o, and W3= O in the w phase space.

is sham schemtical)y in the following diagrsm:

—.. - -.. —.. . .-
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Point 1, on locus of first switching

\

.. Point 2, on zero

~

+..% .

Second trajecto~

points

trajectory

WI =

W2 =

‘3 =

no
o

0

‘2

Wl=o

\ W2=0

‘3=0

Pictorial diagram of typical wn phase-space trajectory

& first trajectory of this diagram is described by equations (A27)
and (A28) tith 4 substituted for A. The cons-ts 133 and B4 Wve
the same respective values at auy point on this trajectory. TfBjis

evaluated from equation (A27) at petit O and equated to ~ evaluated at

point 1 on this trajectory, the following equation can be written:

E@?
tial and

application of this procedure to the three trajectories for both
B4 results in the folluwing six equations in terms of the M-

terminal points and the two switching points:

,

-.. . -.---. —.-— ——— —-—-— -
— .—. —
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From initial

from second trajectory,

. -.

and from zero trajectory,

al

jw32 +
?& (A3 - A2)

—. -.

(A30)

(A31)
●

(A33)

-J
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‘Al

The elimination of w~~

(A34) yields the following two

w~, and W31:

.— .—. —

25

(A34)

Al /

w~~ ~ w32 from equations (A29) to

simultaneous equations in terms of ~~

alla

(A36)

Inasmuch as wU~ wpg, and w31 represent the first switchhg point,

these two equations ~ress the locus of first switching points.

Eqmtions (A33) and (A34) can be manipulated to yield the W1W2

and the W2W3 projections of the zero trajectory as follows~.

(&+%’)-jak2?Jw32=.3’m+wE +
4 () 1

——. —-.. .—. —__—
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b, radians/see‘i ~ . . .
c, (radians/sec)2 . . .
Kl, d.eg/seti/volt.-. ‘. .

K2, volts/g unit . . . .

~, volts/g unit/se62
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.

4- Control-surface servo~ + Airframe~

‘ +
.+1 6 K4 $

*

-1 S(TS+l )
,

(a) Contactor roll control system.

~control.surface servo~ +A-lrfmame ~

@1+~ Computer
‘+1 b

. “3

‘4 $
element. -1+ S(TS+l) —

(b) Optimum contactor roll control system.

Figure l.- Block diagrams of the contactor and the optimum contactor
second-order roll control systems.
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Figure 2.- Block diagmu of the optimum third-order contactor ncunA-
acceleration control system.
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Figure 3.-

0 ●1

Time,t, sea

Typical response of the third-order
control system to a step command

contactor
signal.
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Figure 4.- Block diagram of the lblted-lineex nornd.-e.cceleration aontrol
8yetei11.
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Figure 5.- A phse - lane plot of’the contactor roll.corrtrol system in

J’response to a 5 step input. The zero trajectory for thiB system is

superimposed on the.plane.
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Analog-computer results
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Region of -5

-30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30

Error signal, 6, deg

Figure ‘i’.- Plot of the zero trajectories of the contactor roll control
system on the phase plane. vl
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Figure 9.-Initialswitchingcurve in the

contactor normal-acceleration

W3W2 plane of

control sy2tem.
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Figure
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XL.- Initial switching curve in the W1W5 plane for the optimum

contactor normal-acceleration control system.
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Figure 12.-
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of first switching points
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first switching points in the upper half of the
the contactor nqmal-acceleration control system.
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control eystem.

.Z .s ●4

normal-accelerat ion



.. ..- ..— .. .

42 NACA TN 3743
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Figure 14.- A phase-plane plot illustrating the.meth~ of determinhg
points on the first switching locus with an analog computer for the
optimum contactor normal-acceleration control.system.
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Figure 16.- A typical. tra~ectory in the w2wl plane for the

contactor normal-acceleration control system.
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Figure 17.-Normal-acceleration transient responses of the optimum con-
tactor normal-acceleration control system to step inputs of ~. .
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